Refine Your Search

Topic

Author

Search Results

Standard

Utilizing Aircraft Integrated Vehicle Health Management Systems for Maintenance Credit

2021-01-12
WIP
ARP7122
The processes outlined in this document cover the entire aircraft for both commercial and military applications. In addition to on-board systems, it covers on-ground elements as well. The practical application of this standardized process is detailed in the form of a checklist. As in all HM-1 documents, the scope of this document covers sensing and acquisition systems, typically on board, data transmission systems and processes, methods and hardware for data analysis, and finally, maintenance actions. The on-board aspects relating to safety of flight, pilot notification, etc., are addressed by the other SAE Committees standards and documents. To help explain the process and the use of the checklist, some high-level use cases related to maintenance credit applications are included.
Standard

Aeroengine Hazard Zone

2020-03-31
WIP
ARP6990
Aeroengine Hazard Zone document will standardize the major aspects of processes that may be used for the determination of hazards to aerospace personnel when performing duties on turbojet, turbofan, turboprop and auxiliary power units installed on aircraft. It includes discussions of basic definitions, analytical and methods to describe the hazard zones for a given propulsion system installed on various aircraft. Standardization of definitions of sources of hazards, tools, presentation of hazard zones would benefit airplane, engine, airline customers and airport planners.
Standard

Recommended Maintenance, Inspection and Monitoring Procedure for Engine Test Cells

2018-12-20
WIP
ARP8540
A guide to maintenance procedures in test cells. A suggested equipment monitoring and/or inspections to reduce the probability of unanticipated failures and associated test cell down time. Guidelines for using typically available data acquisition capabilities in a test cell are provided to utilize normally available trending capability to monitor the testing equipment in addition to using these tools for the usual monitoring of the test article. For the common types of test cells (turboshaft, turboprop, turbojet, and turbofan) test facilities, lists of typical systems with their associated components are provided with suggested inspection intervals and key items to look for in the inspection. A template risk assessment form is provided to facilitate the customization of the assessment of the test cell components to help predict recommended spares.
Standard

Endurance tests for Aircraft Electric Engine

2021-03-08
WIP
ARP8689
Provide guidance to test the durability and integrity requirements of Electric Engines to be type certificated for installation in aircraft. This ARP is intended to provide a means to demonstrate compliance to certification requirements of Engines separately of aircraft certification requirements.
Standard

Vertical Dynamic Balancing Systems – Isolating Repeatability Issues in Challenging Applications

2021-05-26
WIP
ARP8911
This new Aerospace Recommended Practice will serve as a practical resource that offers guidance to both the machine operator and Process Engineer for isolating the source(s) of non-repeatability in measured unbalance data. The content of this standard addresses: • Vertical Dynamic Machine Capability to achieve the specified unbalance tolerances and repeat within those tolerances • Tooling Capability to repeat within the specified unbalance tolerances • Rotor characteristics that may preclude repeating within the required unbalance tolerances.
Standard

ADHESIVE, ELECTRICALLY CONDUCTIVE Silver - Organic Resin

2011-08-12
HISTORICAL
AMS3681B
This specification covers an electrically-conductive adhesive supplied as two components; a paste of silver-filled, epoxy-base adhesive and a separate curing agent which may be paste or liquid.
Standard

CLOTH, GLASS, VINYL COATED

1994-04-01
HISTORICAL
AMS3664B
This specification covers four types of glass cloth (See 3.1) coated on both sides with a flexible, vinyl-copolymer resin, the type of glass cloth varying with nominal thickness of the product.
Standard

Cloth, Glass, Vinyl Coated

2012-01-16
CURRENT
AMS3664C
This specification covers four types of glass cloth (See 3.1) coated on both sides with a flexible, vinyl-copolymer resin, the type of glass cloth varying with nominal thickness of the product.
Standard

In-Flight Thrust Determination for Aircraft with Thrust Vectoring

2022-06-14
CURRENT
AIR6007
The purpose of this document is to provide guidance on in-flight thrust determination of engines that are impacted by intentional or unintentional thrust vectoring. However, as indicated in the Foreword, the field of aircraft thrust vectoring is varied and complex. For simplicity and coherence of purpose, this document will be limited in scope to multi-axis thrust vectoring nozzles or vanes attached to the rear of the engine or airfame; single-axis thrust vectoring and unintentional thrust vectoring (fixed shelf or deck configuration) are special cases of this discussion. Specifically excluded from this scope are thrust vectoring created primarily by airframe components such as wing flaps, etc.; lift engines, propulsive fans and thrust augmenting ejectors; and powerplants that rotate or otherwise move with respect to the airframe.
Standard

Procedure for the Calculation of non-volatile Particulate Matter Sampling and Measurement System Penetration Functions and System Loss Correction Factors

2022-06-24
CURRENT
AIR6504
This SAE Aerospace Information Report (AIR) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing the non-volatile PM (nvPM) mass and number concentrations measured at the end of the sampling system.1 The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method2 along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane.
X